首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   5篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   12篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
81.
82.
83.
1. Salinity is a strong selective force for many aquatic organisms, affecting both ecological and evolutionary processes. Most of our knowledge on the effects of salinity on rotifers in the Brachionus plicatilis species complex is based mainly on populations from waterbodies that experience broad environmental changes both seasonally and annually. We tested the hypothesis that, despite the supposedly high potential for gene flow among rotifers inhabiting neighbouring environments, constant salinity has promoted local adaptation, genetic population divergence and even cryptic speciation in B. plicatilis complex populations from three deep maar lakes of distinct salinities [1.1, 6.5 and 9.0 g L?1 total dissolved solids (TDS)] in Central Mexico. 2. To look for local adaptation, we performed common garden experiments to test the effect of different salinities on population density and intrinsic growth rate (r). Then, we evaluated the genetic divergence by sequencing the cytochrome c oxidase subunit I (COI) gene and performed reproductive trials to assess the potential gene flow among the three populations and with other closely related B. plicatilis complex species. 3. We confirmed that the rotifer populations have phenotypic plasticity in tolerance of salinity, but only rotifers from the least saline lake are adapted to low salinity. Among the populations, sequence divergence at COI was very low (just a single haplotype was found), suggesting a persistent founder effect from a relatively recent single colonisation event and a subsequent dispersal from one lake to the others, and a very restricted immigration rate. In the phylogenetic analysis, rotifers from this area of Mexico clustered in the same clade with the middle‐sized species Brachionus ibericus and B. sp. ‘Almenara’. Mexican rotifers showed successful recognition, copulation and formation of hybrids among them, but interpopulation breeding with the Spanish B. ibericus and B. sp. ‘Almenara’ was unsuccessful. 4. We conclude that the B. plicatilis complex populations from these three lakes belong to a new biological species not yet described (presently named B. sp. ‘Mexico’). To our knowledge, this is the first report of local adaptation of a natural B. plicatilis complex population living in freshwater conditions (1.1 g L?1 TDS).  相似文献   
84.
85.
Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.  相似文献   
86.
87.

Background  

In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms.  相似文献   
88.
89.
Nimotuzumab is a humanized therapeutic monoclonal antibody against epidermal growth factor receptor (EGFR). Clinical trials are ongoing globally to evaluate nimotuzumab in different indications. Nimotuzumab has been granted approval for use in squamous cell carcinoma of head and neck (SCCHN), glioma and nasopharyngeal cancer in different countries. This review focuses on the unique functional characteristics of nimotuzumab. Also, it discusses the safety and efficacy data obtained from the Phase IIb clinical trial conducted in India in SCCHN. Post marketing surveillance data from Cuba for the use of nimotuzumab in pediatric and adult glioma is also discussed. Overall, nimotuzumab has immense therapeutic potential in cancers of epithelial origin.Key words: nimotuzumab, EGFR, humanized, monoclonal antibody, SCCHN, glioma, overall survival  相似文献   
90.

Background

Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease.

Results

We obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87%) contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome) sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome), as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific.

Conclusion

Our analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic analysis of all known epitopes in gliadins and glutenins will lead to better understanding of the differences in toxiCity among wheat varieties. On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the CD patient population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号